On approximation of Bernstein-Durrmeyer operators in movable interval
نویسندگان
چکیده
<p style='text-indent:20px;'>In the present paper, we introduce a new type of Bernstein-Durrmeyer operators preserving linear functions in movable interval. The approximation rate for continuous and Voronovskaja's asymptotic estimate are obtained.</p>
منابع مشابه
Pointwise approximation for a type of Bernstein-Durrmeyer operators
*Correspondence: [email protected] College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, 050024, People’s Republic of China Hebei Key Laboratory of Computational Mathematics and Applications, Shijiazhuang, 050024, People’s Republic of China Abstract We give the direct and inverse approximation theorems for a new type of Bernstein-Durrmeyer operators with the mod...
متن کاملPointwise approximation by a Durrmeyer variant of Bernstein-Stancu operators
In the present paper, we introduce a kind of Durrmeyer variant of Bernstein-Stancu operators, and we obtain the direct and converse results of approximation by the operators.
متن کاملBlending Type Approximation by Bernstein-durrmeyer Type Operators
In this note, we introduce the Durrmeyer variant of Stancu operators that preserve the constant functions depending on non-negative parameters. We give a global approximation theorem in terms of the Ditzian-Totik modulus of smoothness, a Voronovskaja type theorem and a local approximation theorem by means of second order modulus of continuity. Also, we obtain the rate of approximation for absol...
متن کاملPointwise approximation by Bernstein type operators in mobile interval
Keywords: Bernstein operators Pointwise approximation Rate of convergence a b s t r a c t In the present paper, we study pointwise approximation by Bernstein–Durrmeyer type operators in the mobile interval x 2 0; 1 À 1 nþ1 h i , with use of Peetre's K-functional and x 2 u k ðf ; tÞ ð0 6 k 6 1Þ, we give its properties and obtain the direct and inverse theorems for these operators.
متن کاملApproximation by the Bernstein–Durrmeyer Operator on a Simplex
For the Jacobi-type Bernstein–Durrmeyer operator Mn,κ on the simplex T d of R , we proved that for f ∈ L(Wκ ;T ) with 1 <p <∞, K2,Φ ( f,n−1 ) κ,p ≤ c‖f −Mn,κf ‖κ,p ≤ c′K2,Φ ( f,n−1 ) κ,p + c′n−1‖f ‖κ,p, where Wκ denotes the usual Jacobi weight on T d , K2,Φ(f, t)κ,p and ‖ · ‖κ,p denote the second-order Ditzian–Totik K-functional and the L-norm with respect to the weight Wκ on T d , respectively...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical foundations of computing
سال: 2022
ISSN: ['2577-8838']
DOI: https://doi.org/10.3934/mfc.2022008